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SomeMotivation for Abstract Measure Theory. Riemann’s theory of integration does not pro-

vide a well-behaved theory of integration with respect to limit operations. For instance, suppose

fn ∶ ℝ → ℝ are a sequence of functions converging (in some sense) to some f ∶ ℝ → ℝ, then one

would like

lim
n→+∞

∫
fn =

∫
lim

n→+∞

fn.

Unfortunately, this is not true unless the convergence of fn → f is in a very strong sense (e.g.,

uniform convergence).

This has signi�cant rami�cations for an analysis of function spaces (i.e., the study of Banach and

Hilbert spaces – in�nite-dimensional vector spaces endowed with a complete inner product or

norm). In turn, this limits the utility of function spaces de�ned by some Riemann integrability

criterion in the theory of partial di�erential equations (PDE).

More precisely, if we consider the space L
2
([0, 1]) of functions satisfying

‖f ‖
2

L
2
([0,1])

∶=
∫

1

0

|f (x)|
2
dx < +∞,

then this space is not complete (in the sense that Cauchy sequences converge) with respect to the

norm ‖ ⋅ ‖
L
2
([0,1])

if the integral is understood as a Riemann integral.

It is complete, however, if the integral is understood to be the Lebesgue integral. One now encounters

(at least) two problems:

(i) How does one construct such an integral?

(ii) Does this new integral honestly generalize the Riemann integral (which enjoys many desir-

able properties such as the fundamental theorem of calculus)?

There is motivation to consider measures/integrals beyond just the Lebesgue measure. For instance,

the spectral theorem for unbounded self-adjoint operators requires the theory of projection-valued

measures – this is essential for quantum mechanics. In fact, the most commonly occuring in�nite-

dimensional Hilbert space that occurs in quantum mechanics is L
2
(ℝ

3
).

1. Some Reminders

Fix a universal set R. Denote by R a collection of sets (in R).
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De�nition 1.1. We declare R to be a ring if it is non-empty and

(i) is closed under unions, i.e., A, B ∈ R ⟹ A ∪ B ∈ R;

(ii) is closed under complements, i.e., A, B ∈ R ⟹ A⧵B ∈ R.

If, in addition, R ∈ R, then we say that R is an algebra.

Example 1.2. It is clear that R ∶= {open intervals in ℝ} violates (ii), and hence does not de�ne a

ring. Indeed, let A = ℝ ∈ R and B = (0, 1), then A⧵B = (−∞, 0] ∪ [1,∞), which is obviously not an

open interval. The same can be said for the set of closed intervals in ℝ.

Remark 1.3. Do these de�nitions coincide with the de�nitions of ring and algebra from abstract

algebra?

De�nition 1.4. Let R be a ring. We say that R is a �–ring if

(An)n∈ℕ ⟹ ⋃

n∈ℕ

An ∈ R.

If, in addition, R contains the universal set R, then we declare R to be a �–algebra.

Aside: Why the terminology “�–algebra"? In (point-set) topology, an F� set is a countable union

of closed sets. The F comes from the French word fermé (meaning closed) and � being Greek for

S which is the leading letter in the French word somme (meaning sum or union). Hence, the letter

� is used to indicate countable unions. A �–algebra is a collection of subsets that is stable under

countable unions. The analog for a countable intersection of open sets is called a G� set.

Example 1.5. A dumb example of a �–algebra is {�, R}. A slightly less-trivial example is given by

the power set of R.

Theorem 1.6. Let U be a collection of non-empty open subsets of R. There exists a unique ring

R(U) that contains U (as a proper subset
1
) and is contained in every ring that contains U.

De�nition 1.7. The ring R(U) in Theorem 1.6 is called the ring generated by U.

De�nition 1.8. A map � ∶ R → [0, +∞] is a measure if

(i) �(∅) = 0;

(ii) (�–additivity). For (An)n∈ℕ ⊂ R such thatAi ∩Aj = ∅ for i ≠ j, and ⋃
n∈ℕ

An ∈ R, the equality

�

(

⋃

n∈ℕ

An
)

=

∞

∑

n=1

�(An)

holds.

Remarks 1.9. If �(A∪B) = �(A)+�(B) = �(A)+�(B), then �(∅) = �(∅∪∅) = 2�(∅), and thus �(∅) = 0.

1
Otherwise the statement is trivial.
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Proposition 1.10. A measure is monotone in the sense that A ⊂ B implies �(A) ≤ �(B).

Proof. Write B = A ∩ B + B⧵A. Then

�(B) = �(A ∩ B)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=�(A)

+ �(B⧵A)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

≥0

≥ �(A).

�

2. Outer Measures

From now on, we assume that �(R) < ∞.

De�nition 2.1. Let R ⊂ 2
R

be an algebra. Endow R with a measure � ∶ R → [0, +∞]. De�ne the

outer measure (of �) to be the function �
∗
∶ 2

R
→ ℝ given by

�
∗
(A) ∶= inf

n(∞)

∑

i=1

�(Ei),

where the in�mum is taken over all coverings (possibly in�nite) of A by (E� )�∈A, for some indexing

set A.

Proposition 2.2. Let �
∗
∶ 2

R
→ ℝ be the outer measure of a measure � ∶ R → [0, +∞], where R

is an algebra. If A ∈ R, then the value of the outer measure on A coincides with that of the measure

itself, i.e.,

A ∈ R ⟹ �
∗
(A) = �(A).

Remark 2.3. By de�nition, the outer measure �
∗

is non-negative. From Proposition, we see that

�
∗
(∅) = 0. In general, however, �

∗
will not be �–additive, and thus not de�ne a measure, in general.

It does, however, always satisfy �–subadditivity:

�
∗

(

⋃

n∈ℕ

An
)

≤ ∑

n∈ℕ

�(An).

3. Measurable Sets

De�nition 3.1. A set A ⊂ R is said to be measurable if

�
∗
(E) = �

∗
(E ∩ A) + �

∗
(E ∩ A

c
),

for each E ⊂ R.

Cautionary remark 3.2. Note that in the lecture notes, Artem uses the notation A ∶= R⧵A to

indicate the set-theoretic complement (not the closure of a set).
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Theorem 3.3. Let � ∶ R → [0, +∞] be a measure on an algebra R. Let
̃R ⊂ R denote the set of

measurable sets. The restriction of the outer measure �
∗

to
̃R de�nes a measure, which we denote

by

�̃ ∶= �
∗
|̃R.

For the statement of Theorem to be meaningful, we need to show that

(i)
̃R is a �–algebra;

(ii) �̃ ∶
̃R → [0, +∞] is �–additive;

(iii) R is contained in
̃R.

Lemma 3.4. ̃R is a �–algebra.

Proof. We need to show that
̃R is closed under both �nite and countable unions, complements, and

R is contained in
̃R.

(i) Let A, B ∈
̃R. We want to show that A ∪ B ∈

̃R, i.e., for any E ⊂ R, we have

�
∗
(E) = �

∗
(E ∩ (A ∪ B)) + �

∗
(E ∩ (A ∪ B)

c
).

Since A ∈
̃R, we have

�
∗
(E) = �

∗
(E ∩ A) + �

∗
(E ∩ A

c
),

and since B ∈
̃R, we have

�
∗
(E) = �

∗
(E ∩ B) + �

∗
(E ∩ B

c
).

Now consider the picture

A B

E

From which, we see that

�
∗
(E ∩ (A ∪ B)) = �

∗
(E ∩ A) + �

∗
(E ∩ B) − �

∗
(E ∩ A ∩ B),

and

�
∗
(E ∩ (A ∪ B)

c
) = �(E) − �

∗
(E ∩ A) − �

∗
(E ∩ B) + �

∗
(E ∩ A ∩ B).
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Hence,

�
∗
(E ∩ (A ∪ B)) + �

∗
(E ∩ (A ∪ B)

c
) = �(E) − �

∗
(E ∩ A) − �

∗
(E ∩ B) + �

∗
(E ∩ A ∩ B)

+�
∗
(E ∩ A) + �

∗
(E ∩ B) − �

∗
(E ∩ A ∩ B) = �(E).

(ii) Now we need to show that for A, B ∈
̃R, we have A⧵B ∈

̃R. Since the de�nition of measura-

bility is invariant under complements, this is immediate.

(iii) Hence, it remains to show that if (Ak)k∈ℕ ∈
̃R, then ⋃

k∈ℕ
Ak ∈

̃R. Since �
∗

is �–subadditive,

we know that for any E ⊂ R, we have

�
∗
(E) ≤ �

∗

(

E ∩ ⋃

k∈ℕ

Ak
)

+ �
∗

(

E ∩

(

⋃

k∈ℕ

Ak
)

c

)

.

We need only show that

�
∗
(E) ≥ �

∗

(

E ∩ ⋃

k∈ℕ

Ak
)

+ �
∗

(

E ∩

(

⋃

k∈ℕ

Ak
)

c

)

in order to achieve equality.

From before, we know that for any �xed n ∈ ℕ, the union ⋃
n

k=1
Ak ∈

̃R. So

�
∗
(E) = �

∗

(

E ∩

n

⋃

k=1

Ak
)

+ �
∗

(

E ∩

(

n

⋃

k=1

Ak
)

c

)

≥

n

∑

k=1

�
∗
(E ∩ Ak) + �

∗

(

E ∩

(

n

⋃

k=1

Ak
)

c

)

,

from the subadditivity of the outer measure. From the monotonicity of the outer measure,

we also see that

�
∗

(

E ∩

(

n

⋃

k=1

Ak
)

c

)

= �
∗

(

E ∩

n

⋂

k=1

A
c

k

)

≥ �
∗

(

E ∩ ⋂

k∈ℕ

A
c

k

)

= �
∗

(

E ∩

(

⋃

k∈ℕ

Ak
)

c

)

.

Allowing n → ∞, we have

�
∗
(E) ≥

∞

∑

k=1

�
∗
(E ∩ Ak) + �

∗

(

E ∩

(

n

⋃

k=1

Ak
)

c

)

.

By the subadditivity of the outer measure again, however,

∞

∑

k=1

�
∗
(E ∩ Ak) ≥ �

∗

(

∞

⋃

k=1

E ∩ Ak
)

= �
∗

(

E ∩ ⋃

k∈ℕ

Ak
)

.

�
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